Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Cinnamolid-3 β-ol hemihydrate and 3β-hydroxycinnamolide acetate, two drimanolide-class sesquiterpene lactones from Warburgia ugandensis

Yi-Xun Zhang, ${ }^{\text {a }}$ Shauntina H. Jackson, ${ }^{\text {a }}$ Mohamed S. Rajab, ${ }^{\text {b }}$ Frank R. Fronczek ${ }^{\text {a* }}$ and Steven F. Watkins ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and ${ }^{\text {b }}$ Department of Chemistry, Moi University, PO Box 3900, Eldoret, Kenya Correspondence e-mail: ffroncz@lsu.edu

Received 23 February 2006
Accepted 27 February 2006
Online 18 March 2006
3β-Hydroxy-7-drimen-12,11-olide hemihydrate, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \cdot-$ $0.5 \mathrm{H}_{2} \mathrm{O}$, (I), has two sesquiterpene molecules and one water molecule in the asymmetric unit. The OH groups of both molecules and both H atoms of the water molecule are involved in near-linear intermolecular hydrogen bonds, having $\mathrm{O} \cdots \mathrm{O}$ distances in the range 2.632 (3)-2.791 (2) A. 3β-Acet-oxy-7-drimen-12,11-olide, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$, (II), has its ring system in very nearly the same conformation as the two molecules of (I).

Comment

Plants of the genus Warburgia are of interest because of their use by herbalists in Kenya for the treatment of a number of parasitic diseases (Kokwaro, 1976). Isolation of drimanolideclass sesquiterpenes (I) and (II) (see scheme) from the stem bark of Warburgia ugandensis Sprague (Canellaceae) has been described by Kioy et al. (1990). The molecular structures of 3β-hydroxy-7-drimen-12,11-olide hemihydrate, (I), and 3β -acetoxy-7-drimen-12,11-olide, (II), were determined in order to ascertain unambiguously the relative stereochemistry of the $3-\mathrm{OH}$ and 3-OAc groups, respectively, as well as to confirm the relative configurations of the other asymmetric centers.

(I)

(II)

One of the two independent molecules of (I) is shown in Fig. 1. The OH group at C 3 is seen to be β-oriented and the configurations at the other chiral centers are confirmed to be those reported by Kioy et al. (1990). The conformations of the two independent molecules are nearly identical, with a maximum deviation in an endocyclic torsion angle of $2.5(6)^{\circ}$ about the double bond $\mathrm{C} 7=\mathrm{C} 8$. The OH -carrying A ring has a
chair conformation, the central B ring a half-chair conformation, and the lactone ring a C_{2} half-chair conformation, with the axis passing through C 12 and bisecting $\mathrm{C} 9-\mathrm{C} 11$. The most notable difference in the conformations of the two molecules involves the OH group, in which the $\mathrm{O}-\mathrm{H}$ bond is roughly parallel to $\mathrm{C} 10-\mathrm{C} 15$ in the A molecule and roughly antiparallel in the B molecule, in accordance with the hydrogenbonding scheme. The OH group of the A molecule donates a hydrogen bond to the water molecule, while the OH of the B molecule instead donates to the OH group of the A molecule. The lactone carbonyl atom O 2 of the A molecule accepts a hydrogen bond (from water), but that of the B molecule is not involved in hydrogen bonding. The acceptor for the second hydrogen bond donated by water is the OH group of the B molecule.

Compound (II) is shown in Fig. 2, and the configurations at all the chiral centers are seen to be the same as those of (I). The conformation of the ring system also agrees well with that of (I); the largest individual difference between an endocyclic torsion angle in (II) and the corresponding average value in (I) is $4.1(5)^{\circ}$ for $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$. The conformations of the ring system in both title compounds agree fairly well with those of two molecules also having the drimanolide skeleton,

Figure 1
One of the two independent molecules (molecule A) in (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A view of the acetate, (II), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
viz. insulicolide A (Rahbaek et al., 1997) and iresin dibromobenzoate (Rossman \& Lipscomb, 1958). The cell dimensions of (II) at room temperature (299 K), measured on a Nonius CAD-4 diffractometer using $\mathrm{Cu} K \alpha$ radiation, are $a=$ 6.8885 (6) $\AA, b=7.9753$ (8) \AA and $c=14.411$ (2) \AA, and $\beta=$ 101.613 (7) ${ }^{\circ}$.

Experimental

Compounds (I) and (II) were isolated from the stem bark of Warburgia ugandensis Sprague (Canellaceae) collected in Eldoret,
Uasin Gishu District, Kenya, as described by Kioy et al. (1990). Crystals were grown from a solution in acetone-hexane ($1: 1 \mathrm{v} / \mathrm{v}$).

Drimanolide (I)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=259.33$
Monoclinic, $P 2_{1}$
$a=12.875$ (3) \AA
$b=6.153$ (2) \AA
$c=18.268$ (4) \AA
$\beta=106.031(16)^{\circ}$
$V=1390.9(6) \AA^{3}$
$Z=4$
$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4619 reflections
$\theta=2.5-32.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.42 \times 0.35 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer (with an Oxford Cryosystems Cryostream cooler) ω scans with κ offsets
17077 measured reflections
5214 independent reflections
3773 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=32.0^{\circ}$
$h=-19 \rightarrow 19$
$k=-8 \rightarrow 9$
$l=-27 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.112$
$S=1.03$
5214 reflections
353 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 A-\mathrm{H} 3 \mathrm{O} A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	$0.86(3)$	$1.79(3)$	$2.632(3)$	$164(3)$
$\mathrm{O} 3 B-\mathrm{H} 3 \mathrm{O} B \cdots \mathrm{O} 3 A^{\mathrm{ii}}$	$0.82(3)$	$1.83(4)$	$2.641(2)$	$168(3)$
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O} 2 A$	$0.90(3)$	$1.90(3)$	$2.791(2)$	$169(3)$
O1 $W-\mathrm{H} 2 W \cdots \mathrm{O} 3 B^{\text {iii }}$	$0.88(4)$	$1.83(4)$	$2.694(3)$	$166(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$; (iii) $x, y+1, z$.

Drimanolide (II)

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$
$M_{r}=292.36$
Monoclinic, $P 2_{1}$
$D_{x}=1.285 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=6.802$ (3) \AA
$b=7.918$ (4) \AA
$c=14.302(8) \AA$
Cell parameters from 2218
reflections
$\theta=2.5-30.0^{\circ}$
$\beta=101.22$ (2) ${ }^{\circ}$
$V=755.6(7) \AA^{3}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, colorless
$0.33 \times 0.18 \times 0.15 \mathrm{~mm}$
Data collection
Nonius KappaCCD area-detector diffractometer (with an Oxford
Cryosystems Cryostream cooler)
ω scans with κ offsets
8695 measured reflections
2353 independent reflections
1456 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0473 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.012 (3)

Table 3
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (II).

$\mathrm{O} 2-\mathrm{C} 12$	$1.207(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.326(4)$
$\mathrm{O} 4-\mathrm{C} 16$	$1.201(3)$		
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-56.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	$50.6(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$61.2(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-55.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-56.6(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 1$	$-49.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$50.9(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$62.9(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-39.4(3)$	$\mathrm{C} 12-\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 9$	$-17.0(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$7.1(4)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11-\mathrm{O} 1$	$20.2(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.6(4)$	$\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 8$	$6.0(3)$
$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 11$	$-17.1(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12-\mathrm{O} 1$	$7.6(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$27.8(4)$		

H atoms were placed in calculated positions, guided by difference maps, with $\mathrm{C}-\mathrm{H}$ bond distances in the range $0.95-1.00 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C), and thereafter treated as riding. The coordinates for OH H atoms were refined. A torsional parameter was refined for each methyl group. The absolute configuration could not be established from the X-ray data, but was assigned based on the configuration of insulicolide A (Rahbaek et al., 1997). Friedel pairs were averaged.

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK;
program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3003). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kioy, D., Gray, A. \& Waterman, P. (1990). Phytochemistry, 29, 3535-3538.
Kokwaro, J. O. (1976). Medicinal Plants of East Africa, p. 45. Nairobi: East African Literature Bureau.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rahbaek, L., Christophersen, C., Frisvad, J., Bengaard, H. S., Larsen, S. \& Rassing, B. R. (1997). J. Nat. Prod. 60, 811-813.
Rossman, M. G. \& Lipscomb, W. N. (1958). Tetrahedron, 4, 275-293.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

